Pre-analytical Quality Assurance; An Important Milestone to be Achieved

Shehla Ambreen Alizai1, Lubna Ehtizaz2, Ambreen Ansar3, Saba Khilji4, Ayesha Sarwar5, Maliha Saad6

1Associate Professor of Microbiology, Islamabad Medical and Dental College, Islamabad
2Assistant Professor, Assistant Professor, Chemical Pathology, Wah Medical College, NUMS, Islamabad
3Associate Professor of Community Medicine, Wah Medical College, NUMS, Islamabad
4Postgraduate Trainee Radiology, Islamabad Medical and Dental College, Islamabad
5Associate Professor histopathology, HBS Medical & Dental College, Islamabad
6Assistant Professor Haematology (Pathology), HBS Medical and Dental College

Abstract

Objective: To assess the knowledge of junior doctors and nurses about proper collection, storage and dispatch of pathology specimens to the laboratory.

Methodology: This was a cross sectional questionnaire-based study conducted at Dr. Akbar Niazi Teaching Hospital (DANTH), Islamabad and Pakistan Ordinance factories (POF) Hospital Wah from Jan-June 2023. Hard copy of questionnaire with 29 questions regarding sample collection related to Hematology, Microbiology, Chemical pathology and Histopathology was given to junior doctors and nurses. Total 171 responses were received from junior doctors and nurses of both hospitals. Hundred participants were from DANTH and 71 from POF hospital.

Results: Fifty-eight nurses (34%) and one hundred thirteen doctors (66%) – mainly house officers and postgraduate trainees filled the questionnaire. Data was analyzed with SPSS 21.0 to calculate the percentages of correct answers. Overall, the knowledge was poor with mean score of 9.8 (35%) ranging from 5-17 for doctors and 5-14 for nurses. There was statistically no significant difference (V=12.134, df=12, p=0.435) in the knowledge of doctors (X̅=9.98 ± 2.4) and nurses (X̅=9.5 ± 2.3). However, in Clinical Chemistry and Histopathology doctors had slightly better knowledge than nurses.

Conclusion: This study showed lack of knowledge in nurses and junior doctors regarding proper sampling. It seems appropriate that medical students and paramedics should get an awareness about sample collection as part of their curriculum to avoid extra workload on the laboratory as well as proper management of patients.

Keywords: Preanalytical error, automation, coagulation testing, sample identification errors.

Introduction

Diagnosis and treatment of patients depends on accurate laboratory results. Precise Laboratory assessment plays a key role in decisions regarding diagnosis and treatment of 60 to 70% of patients.1

It was found in the decade of 1970s that even by observing high quality standards during analysis in laboratories many pre analytical variables had a remarkable influence on the test results.2 Sample collection in the laboratory mostly involves drawing blood through venous puncture and putting them in tubes. Defective sampling has a marked influence on the accuracy of results for example underfilling of blood collection tubes leads to higher Lactate dehydrogenase (LD) and Potassium levels.3 Similarly in microbiology for instance blood cultures can get contaminated if proper antisepsis is not done before venepuncture.4 Similar is the case with histopathology...
specimens. The collection of tissues involve invasive procedures and cannot be repeated again. Their proper collection and preservation is important to ensure proper diagnosis and further management of the patient. Specimen collection in hospitals in inpatient setting is routinely done by nurses or junior doctors instead of phlebotomists and standardized protocol concerning sample collection is not followed most of the time, therefore majority of errors take place in the preanalytical phase. In view of the marked improvement along with automation in the analysis, erroneous lab results account for 7-13% occurring in the analytical phase compared to about 46-68% of total inaccuracies in the preanalytical phase leading to the conclusion that appropriate collection of specimens and their preservation is an essential and critical step mandatory in the reporting of good quality results. Proper awareness among healthcare workers regarding collection and storage can be very helpful, based on which precise diagnosis and good treatment objectives can be achieved.

This questionnaire-based study was conducted to assess the knowledge of junior doctors and nurses about proper collection, storage, and dispatch of pathology specimens to the laboratory. These include samples requiring analyses for histopathology, clinical chemistry, microbiology, and hematology.

Methodology

It is was a cross sectional questionnaire-based study conducted after approval of the ethical review board of Islamabad Medical and Dental College from Jan-June 2023. Study was conducted at two teaching hospitals of Rawalpindi & Islamabad equipped with 500-beds. Sample collection is mostly done by junior doctors and nurses in both hospital setups. Sample size was calculated by using an online statistical calculator. Assuming that 29% of the subjects in the population have the factor of interest, the study would require a sample size of 162 for estimating the expected proportion with 7% absolute precision and 95% confidence.

Non-probability purposive sampling technique was used. Hard copy of questionnaire with 29 questions regarding sample collection related to Hematology, Microbiology, Chemical pathology, and Histopathology was given to 200 junior doctors and nurses assuming response rate of 85%. The questionnaire comprised of 16 questions regarding microbiology, 7 questions of Clinical Chemistry, 2 questions of Hematology and 4 questions related to Histopathology. Total 171 responses were received from junior doctors and nurses of both hospitals. Results of 100 participants were collected from Dr. Akbar Niazi Teaching Hospital (DANTH) Islamabad and 71 results were obtained from the setting of Pakistan ordinance factory (POF) hospital, Wah.

Results

Fifty-eight nurses (34%) and one hundred thirteen doctors (66%)—mainly house officers and postgraduate trainees filled the questionnaire. Data was analyzed with SPSS 21.0 to calculate the percentages of correct answers and find difference between knowledge levels of doctors and nurses. The questionnaire was divided in 4 sections namely Histopathology, Hematology, Clinical Chemistry and Microbiology with 4, 2, 7 and 16 questions respectively. For each section the score was categorized as either poor (<50%), average (50-80%) or good (>80%).

Overall, the knowledge was poor with mean score of 9.8 (35%) ranging from 5-17 for doctors and 5-14 for nurses. There was statistically no significant difference (V=12.134, df=12, p=0.435) in the knowledge of doctors (X̅=9.98±2.4) and nurses (X̅=9.5±2.3) as shown in Figure 1. However, in Clinical Chemistry and Histopathology doctors had better knowledge whereas nurses had better knowledge in Hematology. (Figure 2)
containers required for c/s, special stains & histopathology
37 (21.6%).

Figure 2. Comparison of overall & section-wise knowledge regarding pre-analytical errors between doctors and nurses.

In Hematology section good knowledge was observed in 4 nurses as compared to microbiology where no participant had awareness of specimen collection. Poor knowledge was observed in 113 (100%) doctors and 54 (93%) nurses (Table I). Only 53 (30%) knew about optimum time within which the coagulation profile of a blood sample should be checked and 15(9%) knew about EDTA induced platelet clumping.

In the Clinical Chemistry category, only 4 (2%) had good knowledge in this section (Table I). Out of total 171 participants, 94 (83%) doctors and 54(93%) nurses had poor knowledge. Out of total only 66 (38.5%) knew that the time for urine sampling to check proteins is early morning, 89 (52%) told the best way to submit urine sample for diagnosis of tuberculosis. Very few 23 (13.4%) could discern about collection of mid-stream urine. Well-informed on the protocol to collect CSF specimen were 68 (39.7%), 52 (30%) could correctly identify the result of prolonged tourniquet application.

In Microbiology category, 105 (93%) doctors and 56 (96%) nurses had poor knowledge. Nearly half of the total sample 80(46.6%) knew the details of taking blood culture whereas few i.e., 32 (18%) could tell the best time to take blood sample in bacteremia patient. Time required to stop antibiotics before taking blood culture was discerned by 72 (42%) and 89 (52%) recognized the correct time to take blood culture if antibiotics could not be stopped. Nearly 58 (34%) were aware of the procedure of taking throat swab and 65 (38%) had information about sending a specimen for c/s. Only 44(25%) were aware of the instructions to be given for sputum collection and 53 (30%) had knowledge about taking urine specimen for culture in a patient with catheter. Awareness of the right specimen for diagnosing gonorrhea in male patients was acknowledged by 52 (30%). More than half of the participants 93 (54.3%) correctly identified the specimen not suitable for ZN staining for Acid-fast bacilli and only 28 (16.3%) knew the right specimen for N. gonorrhea culture in female patients. Identification of 70% alcohol as the right chemical to clean skin & nails before taking culture for fungal microscopy was done by 98 (57%). Best site to take scrapings for fungal culture was documented by 80 (46.7%) participants. Only 29 (16.9%) knew the correct procedure for sending specimen for fungal microscopy & culture, 42 (24.5%) reported the suitable sample for checking casts in urine, and 95 (55.5%) recognized the specimen never to be refrigerated.

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Poor knowledge</th>
<th>Average knowledge</th>
<th>Good Knowledge</th>
<th>P-value for chi-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctors</td>
<td>104</td>
<td>8</td>
<td>1</td>
<td>0.771</td>
</tr>
<tr>
<td>Nurses</td>
<td>54</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Haematology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctors</td>
<td>113</td>
<td>0</td>
<td>0</td>
<td>0.005</td>
</tr>
<tr>
<td>Nurses</td>
<td>54</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Clinical Chemistry</td>
<td>94</td>
<td>16</td>
<td>3</td>
<td>0.186</td>
</tr>
<tr>
<td>Microbiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doctors</td>
<td>105</td>
<td>8</td>
<td>0</td>
<td>0.3380</td>
</tr>
<tr>
<td>Nurses</td>
<td>56</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Overall score</td>
<td>9.98 ± 2.4</td>
<td>9.5 ± 2.3</td>
<td>0.435</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Sample collection in the pretesting phase is the most susceptible step that can eventually lead to misdiagnosis and mismanagement of the disease. Precise laboratory results influence 60-70% of the clinical decisions and help in determining the appropriate course of treatment and management of the patients.

Multiple studies have been conducted to check awareness of specimen collection among health care staff for lab investigations worldwide.

In our study, knowledge of doctors did not differ statistically than the knowledge of nurses regarding specimen collection for various laboratory tests. In our study majority knew about minimum fixation time for a specimen in formalin and some had knowledge about volume of formalin required for sending histopathological specimen. In specimen collection for clinical chemistry significant number of participants knew the best way to
submit urine sample for diagnosis of renal tuberculosis in contrary to a survey conducted in India. Doctors in our study were ahead of nurses in having knowledge regarding specimen collection of Histopathology, Clinical chemistry and Microbiology. Local studies also showed similar results. Knowledge of doctors was much better as compared to health care staff in a study done in England. The conclusion of this study showed lack of knowledge in nurses and junior doctors regarding proper sampling. It seems appropriate that medical students and paramedics should get an awareness about sample collection as part of their curriculum to avoid extra workload on the laboratory as well as proper management of patients.

References

https://doi.org/10.1016/j.clinbiochem.2019.05.016

https://doi.org/10.1097/PTS.0000000000001115
